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MODULE 1 

 

Classification of Non-Linearities 

Non-linearities can be classified into two types 

1. Incidental Non-Linearities: These are the non-linearities which are inherently 

present in the system. 

Ex: Saturation Dead Zone, Coulomb Friction, Stiction and Backlash. 

2. Intentional Non-Linearities: These are the non-linearities which are deliberately 

inserted in the system to modify the system characteristics. 

Ex: Relay 

Saturation  

 

 

 

 

 

 

 

 

 

 

 

 Output is proportional to the input in the limited range of input signals. 

 When input  exceeds the range, the output tends to become nearly constants. 

Friction 

𝑉𝑖𝑠𝑐𝑜𝑢𝑠 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝐹𝑜𝑟𝑐𝑒 = 𝑓xi 

Where 𝑓 is constant and 𝑥 is relative velocity. 
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Viscous Friction is then linear in nature 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Addition to the viscous force, there exists two non-linear friction 

a. Coulomb Friction 

b. Stiction  

 Coulomb Friction which is a constant retarding force (always opposing the relative 

motion). 

 Stiction Friction which is the force required to initiate motion. 

𝑆𝑡𝑖𝑐𝑡𝑖𝑜𝑛 𝐹𝑜𝑟𝑐𝑒 > 𝐶𝑜𝑢𝑙𝑜𝑚𝑏 𝐹𝑜𝑟𝑐𝑒 

 In actual practice, stiction force decreases with velocity and changes over to Coulomb 

force at reasonably low force. 

#  In actual practice, Frictional Force will proportional to square and cube of the speed. 

Relay (Intentional Non-Linearity) 

  A relay is non-linear power amplifier which can provide large power amplification 

inexpensively and is deliberately introduced in control system. 

 A relay controlled system can be switched abruptly between several discrete states. 

 Relay-controlled system has wide applications in the control field. 

    

Slope = f 
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Jump Phenomenon: 

Non-linear system exhibit phenomenon that cannot exist in linear system. The amplitude of 

variation can increase or decrease abruptly as the excitation frequency 𝜔 is increased or 

decreased. This is known as jump phenomenon.  

Singular Point: 

Time variant system is described by the state equation  

𝑥 = 𝑓(𝑥, 𝑢) 

𝑥 = 𝑓(𝑥) 

 A system represented by an equation of the above form called as autonomous system. 

 The points in the phase-space at which the derivatives of all the state variables are zero. 

Such points are called singular points. 

Nodal Points: 

Eigen Values (𝜆1, 𝜆2) are both real and negative. 
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 They all converge to origin which is then called as nodal point. This is stable nodal 

point. 

 When 𝜆1 & 𝜆2 are both real and positive the result is an unstable nodal point. 

Saddle Point 

Both eigen values are real, equal and negative of each other. The origin in this case a saddle 

point which is always unstable, one eigenvalue being negative. 

Focus Point: 

𝜆1, 𝜆2= 𝜎 ± 𝑗𝜔 = 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒 𝑝𝑎𝑖𝑟 

 The origin in the focus point and is stable/unstable for negative/positive real parts of 

the eigen values. 

 Transformation has been carried out for (𝑥1𝑥2) to (𝑦1 𝑦2) to present the trajectory 

inform of spiral. 

 

 

 

 

 



Centre/Vertex Point:  

 

 

 

 

 

 

 

 

 

 

 

 

Stability of Non-Linear System: 

i. For Free System: A system is stable with zero input and arbitrary initial conditions if 

the resulting trajectory tends to the equilibrium state. 

ii. Force System: A system is stable if with bounded input, the system output is bounded. 

There are types of stability condition in literature. Basically we concentrated on the following: 

i. Stability, Asymptotic and Asymptotic in the large. 

𝑥 = 𝑓(𝑥)   Asymptotic in the large 

Because 𝑥(𝑡0) = 0 

𝑋(𝑡) remain near the origin for all ′𝑡′ 

   ii       A system is said to be locally stable (stable in the small) if the resign 𝛿(𝑡) is small. 

 It is stable 

 Every initial state 𝑋(𝑡0) results in 𝑋(𝑡) → 0 as 𝑡 → ∞ 

 Asymptotically Stability in the large guarantees that every motion will approach the 

origin. 

 

Y2 
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X2 

X1 

𝜆1 𝜆2= 𝑗𝜔 = 𝑜𝑛 𝑡ℎ𝑒 𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 𝑎𝑥𝑖𝑠 



Limit Cycles: 

System Stability has been defined in terms of distributed steady- state coming back to its 

equilibrium position or at least staying within tolerable limits from it. 

 Distributed NL system while staying within tolerable limits may exhibit a special 

behaviour of closed trajectory/limit cycle. 

The limit cycles describe the oscillations of non-linear system. The existence of a limit cycle 

corresponds to an oscillation of fixed amplitude and period. 

Ex: Let us consider the well known Vander Pol’s differential equation 

𝑑2𝑥

𝑑2𝑦
− 𝜇(1 − 𝑥2)

𝑑𝑥

𝑑𝑡
+ 𝑥 = 0                   (1) 

It describes the many non-linearities by comparing with the following linear differential 

equation: 

𝑑2𝑥

𝑑𝑡2
+ 2𝜁

𝑑𝑥

𝑑𝑡
+ 𝑥 = 0 

2𝜉 = −𝜇(1 − 𝑥2) ⟹ 𝜉 = −(
𝜇

2
) (1 − 𝑥2)                 {Damping Factor} 

a. |𝑥| ≫ 1, then damping factor has large positive means system behaves overdamped 

system with decrease of the amplitude of 𝑥1. In this process the damping factor also 

decreases and system state finally reaches the limit cycle. 

b. |𝑥| ≪ 1, then damping factor is negative, hence the amplitude of x increases till the 

system state again enters the limit cycle. 

 On the other hand, if the paths in the neighbourhood of a limit cycle diverse away 

from it, it indicates that the limit cycle is unstable. 

Ex: Vander Pol Equation 

𝑑2𝑥

𝑑2𝑦
+ 𝜇(1 − 𝑥2)

𝑑𝑥

𝑑𝑡
+ 𝑥 = 0 

 It is important to note that a limit cycle in general is an undesirable characteristics of a 

control system. It may be tolerated only if its amplitude is within specified limits. 

 Limit cycles of fixed amplitude and period can be sustained over a finite range of 

system parameter. 

 



 

 

 

 

 

 

 

 

 

 

The differential equation describes the dynamics of the system which is given by  

𝑐 = 𝑢 

𝑟 − 𝑐 = 𝑒 

−�̇� = �̇� ⟹ −�̈� = �̈� (as 𝑟 constant) 

Therefore 𝑒 = −𝑢 

Choosing the state vector [𝑥1 𝑥2]
𝑇 = [𝑒 𝑒] 𝑇̇ , then we have  

�̇�1 = 𝑥2 

�̇�2 = �̈� = −𝑢 

The ouput of on/off controller is  

𝑢 = 𝜇𝑠𝑖𝑔𝑛(𝑒) = 𝜇𝑠𝑖𝑔𝑛(𝑥1) 

The state equation is described as 

�̇�1 = 𝑥2 

�̇�2 = −𝜇𝑠𝑔𝑛(𝑥1) 

The slope of the equation is given by  

𝑑𝑥2

𝑑𝑥1
=

𝜇𝑠𝑖𝑔𝑛(𝑥1)

𝑥2
 

Separating the variables and integrating, we get  

∫ 𝑥2𝑑𝑥 2

𝑥2

𝑥2(0)

= −𝜇 ∫ 𝑠𝑖𝑔𝑛(𝑥1)𝑑𝑥
𝑥1

𝑥1(0)
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Carrying out integration and rearranging we get 

𝑥2
2 = 2𝜇𝑥1(0) + 𝑥2

2(0); 𝑥1 < 0 

Region 𝐼(𝑥1 = 𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝑟𝑒𝑙𝑎𝑦 𝑜𝑢𝑝𝑢𝑡 + 𝜇) 

𝑥2
2 = 2𝜇𝑥1 − 2𝜇𝑥1(0) + 𝑥2

2(0); 𝑥 < 0 

Region II (𝑥1 = 𝑒 𝑛𝑒𝑎𝑔𝑡𝑖𝑣𝑒, 𝑟𝑒𝑙𝑎𝑦 𝑜𝑢𝑡𝑝𝑢𝑡 − 𝜇) 

Construction by Graphical Methods: 

1. Isocline Method 

2. 𝜹 − Method 

 

1. Isocline Method: 

 Trajectory slope at any point is given by 

𝑑𝑥2

𝑑𝑥1
 =𝑠 =

𝑓2(𝑥1,𝑥2)

𝑓1(𝑥1,𝑥2)
                    (1) 

 Slope at a specific point is expressed as  

𝑓2(𝑥1, 𝑥2) = 𝑆1𝑓1(𝑥1, 𝑥2)        (2) 

 Given 𝑆1, this is the equation of an isocline where any trajectory crosses at slope 𝑆1. 

 If isoclines for different values of S are drawn throughout the phase plane trajectory 

starting at any point can be constructed by drawing short lines from one isocline to 

another at average slope of the two adjoining isoclines. 

2. 𝜹 − 𝑴𝒆𝒕𝒉𝒐𝒅: 

 This method is used to construct a single trajectory for systems with describing 

differential equation in the form  

�̈� + 𝑓(𝑥, �̇�, 𝑡) = 0 

Converting this equation to the form 

�̈� + 𝑘2[𝑥 + 𝛿(𝑥, �̇�, 𝑡)] = 0 

Let 𝑘 = 𝑊𝑛, undamped natural frequency of the system when 𝛿 = 0 

Then the equation is written as  

�̈� + 𝜔𝑛
2[𝑥 + 𝛿(𝑥, �̇�, 𝑡)] = 0 

�̈� + 𝜔𝑛
2(𝑥 + 𝛿) = 0 

Choose the state variables as 

𝑥1̇ = 𝑥, 𝑥2 =
�̇�

𝜔𝑛
 

 



Giving state equation 

 𝑥1̇ = 𝜔𝑛𝑥2 

𝑥2 = −𝜔𝑛(𝑥1 + 𝛿) 

The trajectory slope is expressed as  

𝑑𝑥2

𝑑𝑥1
= −

𝑥1 + 𝛿

𝑥2
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Any point 𝑃(𝑥1, 𝑥2), 𝛿 is computed and marked on negative side of 𝑥1 − 𝑎𝑥𝑖𝑠 

 The line of slope −
𝑥2

(𝑥1+𝛿)
 is at 900 to CP. The trajectory at P is then identified as a short 

arc at P with centre at ‘C’. 

 The process is repeated for another ‘P’. shortly away from P(original) on the arc. Then 

completed trajectory can be drawn. 

Phase Plane Method 

Unforced linear spring mass damp system whose dynamics is described by 

𝑃(𝑥1, 𝑥2) 

Q 

B 𝑋1 

𝑋2 

𝑋1 

𝑋2 

𝛿 C 



𝜇
𝑑2𝑥

𝑑𝑡2
= 2𝜉𝜔𝑛

𝑑𝑥

𝑑𝑡
+ 𝜔𝑛

2𝑥 = 0 

𝜉 is the damping factor and 𝜔𝑛 =undamped natural frequency. 

Let the state of the system is described by two variables, displacement (x) and the velocity(
𝑑𝑥

𝑑𝑡
) 

in the state variable notation 𝑥1 = 𝑥, 𝑥2 =
𝑑𝑥

𝑑𝑡
, 

⟹ 𝑠𝑡𝑎𝑡𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 = 𝑝ℎ𝑎𝑠𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

𝑑𝑥1

𝑑𝑡
= 𝑥2 

𝑑𝑥1

𝑑𝑡
= −𝜔𝑛

2𝑥1 − 2𝜉𝜔𝑛𝑥2 

𝑑𝑥1

𝑑𝑡
= 𝑥2 

𝑑𝑥2

𝑑𝑡
= −

𝑓

𝜇
𝑥2 −

𝑘1𝑥1

𝜇
−

𝑘2𝑥1
3

𝜇
     (if the spring force is NL then 𝑘1𝑥 + 𝑘2𝑥

3) 

 The coordinate plane with axes that corresponds to the dependent variables 𝑥1 = 𝑥 and 

its first derivative 𝑥2 = �̈� is called phase-plane. 

 The curve described by the state point (𝑥1, 𝑥2) in the phase plane with time running 

parameter is called phase-trajectory. 

 A plane trajectory can be easily constructed by graphical or analytical technique. 

 Family of trajectories is called phase-portrait. 

The phase plane method uses state model of the system which is obtained from the differential 

equation governing the system dynamics. 

 This method is powerful generally restricted to systems described by 2nd order 

differential equation. 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 𝑥 = 𝑋𝑠𝑖𝑛𝜔𝑡 

 input 𝑥 to the non-linearity is sinusoidal 

 Input, output of the non-linear element will in general be non-sinusoidal periodic 

function which maybe expressed in terms of Fourier series. 

𝑦 = 𝐴0 + 𝐴1𝑠𝑖𝑛𝜔𝑡 + 𝐵1𝑐𝑜𝑠𝜔𝑡 + 𝐴2𝑠𝑖𝑛2𝜔𝑡 + 𝐵2𝑐𝑜𝑠2𝜔𝑡 

 If non-Linearity is assumed to be symmetrical. The average value of Y is zero, so that 

the outputs 𝑦 is given by  

𝑦 = 𝐴1𝑠𝑖𝑛𝜔𝑡 + 𝐵1𝑐𝑜𝑠𝜔𝑡 + 𝐴2𝑠𝑖𝑛2𝜔𝑡 + 𝐵2𝑐𝑜𝑠2𝜔𝑡 + ⋯ 

 The harmonic of 𝑦 can be thrown away for the purpose of analysis and the 

fundamental components of 𝑦 i.e. 

𝑦1 = 𝐴1𝑠𝑖𝑛𝜔𝑡 + 𝐵1𝑐𝑜𝑠𝜔𝑡 

= 𝑌1 sin(𝜔𝑡 + 𝜙) 

 This type of linearization is valid for large signals as well so long as the harmonic 

filtering condition is satisfied. 

 The NL can be replaced by a describing function 𝐾𝑁(𝑥, 𝜔) which is defined to be the 

complex function embodying amplification and phase shift of the fundamental 

frequency component of 𝑦 relative to 𝑥 i.e.  

𝐾𝑁(𝑥, 𝜔) = (
𝑌1

𝑋
) < 𝜙 

When the input to the non-linearity is  

𝑥 = 𝑥𝑠𝑖𝑛𝜔𝑡 

 

 

G1(S) N G2(S) 



 

 

 

 

 

 

 

 

 

Derivation of Describing Function 

The describing function of a non-linear element is given by  

𝐾𝑁(𝑥, 𝜔) = (
𝑌1

𝑋
) < 𝜙 

X- amplitude of the sinusoid 

𝑌1= amplitude of the fundamental harmonic component of the output. 

𝜙 = phase shift of the fundamental harmonic component of the output wrt the input. 

 To compute the describing function of a non-linear element, simply find the 

fundamental harmonic component of its output for an input 𝑥 = 𝑥𝑠𝑖𝑛𝜔𝑡 

The fundamental component of the o/p can be written as  

𝑦1 = 𝐴1𝑠𝑖𝑛𝜔𝑡 + 𝐵1𝑐𝑜𝑠𝜔𝑡 

Where 𝐴1 & 𝐵1 are the coefficients of fourier series. 

𝐴1 =
1

𝜋
∫ 𝑦𝑠𝑖𝑛𝜔𝑡 ∗ 𝑑(𝜔𝑡)

2𝜋

0

 

𝐵1 =
1

𝜋
∫ 𝑦𝑐𝑜𝑠𝜔𝑡 ∗ 𝑑(𝜔𝑡)

2𝜋

0
 

The amplitude and phase angle of the fundamental component of the ouput are given 

by 𝑌1 = √𝐴1
2 + 𝐵1

2,  𝜙 = tan−1  (
𝐵1

𝐴1
) 

Pell’s method of phase trajectory 

The 2nd order non-linear equation is considered to be phase trajectory by using Pell’s Method. 

G1(𝑗𝜔) 𝐾𝑛(𝑥, 𝜔) G2(𝑗𝜔) 
e x 

y 



General form 

 
𝑑2𝑥

𝑑𝑡2
+ 𝜙 (

𝑑𝑥

𝑑𝑡
) + 𝑓(𝑥) = 0                             (1) 

Now defining 𝑥2 =
𝑑𝑥

𝑑𝑡
=

𝑑𝑥1

𝑑𝑡
 

The above equation can be re-arranged after dividing by 𝑥2 to get 

(
𝑑2𝑥

𝑑𝑡2
)

𝑥2
=

𝑥2

𝑥1
=

−𝜙(𝑥2)−𝑓(𝑥1)

𝑥1
                                  (2) 

 −𝜙(𝑥2) with 𝑥2 and −𝑓(𝑥1) with 𝑥1 

For given initial condition 𝑃[𝑥1(0), 𝑥2(0)], the construction of a segment of the trajectory are 

shown.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1) Given the initial condition 𝑃[𝑥1(0), 𝑥2(0)] as shown in above figure. Draw a 

perpendicular from 𝑃 on the 𝑥1 𝑎𝑥𝑖𝑠 to get 𝑂𝜇 = 𝑥1(0) and extend the line 𝑃𝑀 to meet 

the curve −𝑓𝑥1 at N. such that 𝜇𝑁 = 𝑓{𝑥1(0)}. Now locate the point A on the x1 axis 

such that 𝜇𝐴 = 𝜇𝑁 

𝜑 

P[𝑥1(0), 𝑥2(0)] 
𝜑(𝑥2) 

B 

A D O 

−𝑓𝑥1 

𝑋2 

𝑋1 

𝜇 



2) Similarly, for the given 𝑃[𝑥1(0), 𝑥2(0)], draw PB perpendicular on the 𝑥2 𝑎𝑥𝑖𝑠 so that 

OB=𝜇P 𝑥2(0). Now extend PB to meet the –𝜑𝑥2curve at C such that BC = 𝜑{𝑥2(0)}. 

Extend the line segment 𝜇𝐴 on the x1 axis point D such that AD=BC. Therefore the 

segment of the 𝑥1 axis is between D and M equals to the absolute values of the function 

of x1 and x2 . that is DM = DA+A 𝜇= {𝑥2(0)} + 𝑓{𝑥1(0)} 

3) Join the points D and P. the slope of the line DP denoted by 𝑚1 =
𝑃𝑀

𝐷𝑀
=

𝑥2

𝜑(𝑥2)+𝑓(𝑥1)
 

4) If the slope of the trajectory in equation (2) is denoted by 𝑚2, then 𝑚1𝑚2 = −1. The 

solution of equation (2) will move on a segment of a perpendicular to the line DP to get 

the next point 𝜑(𝑥1(𝑓1), 𝑥2(𝑓2)) as shown in the above figure. The process is repeated 

with 𝜑 as the new initial condition to get the complete trajectory. 

Advantages of this method 

a) The construction is very simple. 

b) It eliminates the trial and error approach of the delta method. 

  Examples of Pell’s Method 

𝑑2𝑥

𝑑𝑡2
+ 𝑐1

𝑑𝑥

𝑑𝑡
+ 𝜔1

2(1 + 𝑏2𝑥2)𝑥 = 0 

 Draw the phase plane trajectory using Pell’s method 

Let 𝑐1 = 125   𝜔1
2 = 25000     𝑏2 = 0.60 

We introduce time scaling 𝜏 = 𝜔1𝑡 so that  

𝑑𝜏 = 𝜔1𝑑𝑡 ⟹ 𝜔1 =
𝑑𝜏

𝑑𝑡
  

⇒ 𝑑𝑡 =
𝑑𝜏

𝜔1
 

𝑑2𝑥

𝑑𝜏2

𝜔1
2

+ 𝑐1

𝑑𝑥

𝑑𝜏
𝜔1

+ 𝜔1
2 (1 + 𝑏2𝑥2)𝑥 = 0 

𝜔1
2
𝑑𝑥2

𝑑𝜏2
+ 𝑐1𝜔1

𝑑𝑥

𝑑𝜏
+ 𝜔1

2(1 + 𝑏2𝑥2)𝑥 = 0 

𝑑2𝑥

𝑑𝜏2
+

𝑐1

𝜔1

𝑑𝑥

𝑑𝜏
+ (1 + 𝑏2𝑥2)𝑥 = 0 



MODULE-2 

Stability Study of Non-Linear System 

 

   

 

 

 

 

 

 

 

 

 

 The process for representing a system is in the form of having a feedback connection 

of a linear dynamics system and non-linear element. 

 The control system non-linearity is in form of relay or actuator or sensor non-linearity 

𝑢 = −𝜓(. ) + 𝑟 

 Here we assume that the external input 𝑟 is equal to 0 which indicates the behaviour of 

an unforced system. 

 The system is said to be absolutely stable if it has a globally uniformly asymptotically 

stable equilibrium points are the origin. 

 For all non-linearities in a given circle, without input, initial condition and 

asymptotically stable. 

 For this the Circle and Popov criteria give frequency domain absolutely stability in the 

form of silent positive realness of certain transfer function. 

 In the SISO case both criterion can be applied graphically. We assume the external 

input 𝑟 = 0 and the behaviour of unforced system can be represented by  

�̇� = 𝐴𝑥 + 𝐵𝑢 

𝑌 = 𝐶𝑋 + 𝐷𝑢 

𝑢 = 𝜓(. ) 

G(s) 

𝜓(. ) 

y 

r u 



Where 𝑋 ∈ 𝑅∧      𝑢, 𝑦 ∈ 

(𝐴, 𝐵) − 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑎𝑏𝑙𝑒 

(𝐴, 𝐶) − 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒 

𝜓(0,∞) × 𝑅𝑃 is a memory less possibly time varying non-linearity and probability continuous 

in time 𝑡. 

Definition-1 

A memory function ℎ(0,∞) 

R is said to belong to the sector  

ℎ(0,∞) → if 𝑢. ℎ[𝑡, 𝑢] ≥ 0 

ℎ(∝,∞) → if 𝑢[ℎ(𝑡, 𝑢) − 𝛽𝑢] ≤ 0 

ℎ(0, 𝛽) → 𝑤𝑖𝑡ℎ 𝛽 > 0 𝑖𝑓 [ℎ(𝑡, 𝑢) − 𝛽𝑢] ≤ 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑦 = 𝛼𝑢 

𝑦 = 𝛽𝑢 

Y 

𝑦 = 𝛽𝑢 

𝑦 = 𝛼𝑢 

Y 



Definition 2 

In closed loop system is called absolute lead stable in sector between (0, 𝛽) if the origin is 

globally uniformly asymptotically stable. For any non-linearity in the given sector it is 

absolutely stable in a finite domain if the origin is unifromly asymptoticall stable. 

Popov Criterion (Time Invariant Feedback) 

Popov criteria is applicable if the following condition are satisfied. 

 Time invariant non-linearity 𝜓:𝑅 → 𝑤ℎ𝑒𝑟𝑒 𝑅 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝑡ℎ𝑒 𝑠𝑒𝑐𝑡𝑜𝑟 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛. 

 ∧ 𝑤ℎ𝑒𝑟𝑒 𝑅 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝜓(0) = ∞ 

 𝐺(𝑆) =
𝑃(𝑠)

𝑠∧𝑞(𝑛)
 where degree {P(s)}< 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 {𝑞(𝑠)} 

 The poles of G(s) are in LHP or on imaginary axis.  

 The system is marginally stable in singular case. 

Theorem-1 

The closed loop system is absolutely if 𝜓 ∈ [0, 𝑘] 

0 < 𝑘 < ∞ 

And there exists a constant ‘q’ such that the following condition is satisfied 

𝑅𝑒[𝐺(𝑗𝜔)]. 𝑗𝑞𝑛 𝐼𝑚[𝐺(𝑗𝜔)] > −
1

𝑘
 

Where 𝜔 ∈ [−∞,∞] 

Graphical Representation: 

Popoc plot 𝑃(𝑗𝜔) [𝑍. 𝑅𝑒[𝐺(𝑗𝜔)] + 𝑗𝜔𝐼𝑚[𝐺(𝑗𝜔)]  𝑤ℎ𝑒𝑟𝑒 𝜔 > 0 

The closed loop system is absolutely stable if "𝑃" lies to the right of the line that interrupts 

𝑆 (−
1

𝑘
+ 𝑗0) will slope 

1

𝑞
 

 

−1/𝑘 

𝑅𝑒[𝐺(𝑗𝜔)] 

𝑠𝑙𝑜𝑝𝑒 1/𝑞 
𝜔 × 𝐼𝑚[𝐺(𝑗𝜔)] 



As per popov criterion the closed loop system in absolute stable if 𝜓 ∈ [0, 𝑘], 0 < 𝑘 < ∞ and 

their exists a constant 𝑞 such that the following equation is satisfied.  

𝑅𝑒[𝐺(𝑗𝜔) − 𝑗𝑞𝜔𝐼𝑚[𝐺(𝑗𝜔)] > −
1

𝑘
 

𝑤ℎ𝑒𝑟𝑒 𝜔 ∈ [−∞,∞] 

Circle Criterion: 

Applicable to non-linear time variant system which gives information absolutely stability. 

Definition 

we define 𝐷(𝛼, 𝛽) to be closed disk in the complex plane whose diameter is the line segment 

connected the points (−
1

𝛼
+ 𝑗0) and (−

1

𝛽
+ 𝑗0) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definition 2 

Consider a scalar system 

�̇� = 𝐴𝑥 + 𝐵𝑢 

𝑌 = 𝐶𝑥 + 𝐷𝑢 

𝑢 = −𝜓(𝑦, 𝑡) → non-linear time invariant  

Where 𝐺(𝑠) = 𝑓(𝐴, 𝐵, 𝐶, 𝐷) 𝑎𝑛𝑑 𝜓 ∈ [𝛼, 𝛽] 

−
1

𝛽
+ 𝑗0 

−
1

𝛼
+ 𝑗0 

𝐷(𝛼, 𝛽) 



The system is absolutely stable if one of the three following conditions : 

1) If 𝑜 < 𝛼 < 𝛽 , the nyquist plot 𝐺(𝑗𝜔) doesn’t enter 𝐷[𝛼, 𝛽] and encircles it in counter 

clockwise directions where 𝜔 is no of poles of 𝐺(𝑠) with the real points. 

2) If (𝛼 = 0) < 𝛽, 𝐺(𝑠) is therefore Hurwitz and Nyquist Plot 𝐺(𝑗𝜔) lies to right of the 

vertical line defined by 𝑅𝑒(𝑠) = −
1

𝑝
 

3) If 𝛼 < 0 < 𝛽 is Hurwitz and Nyquist plot 𝐺(𝑗𝜔) the interior part of 𝐷[𝛼, 𝛽]  

 

Describing Function 

𝑥 = 𝑥𝑠𝑖𝑛𝜔𝑡 

𝑦 = 𝑎0 + 𝑎1𝑠𝑖𝑛𝜔𝑡 + 𝑏1𝑐𝑜𝑠𝜔𝑡 + 𝑎2𝑠𝑖𝑛2𝜔𝑡 + 𝑏2𝑐𝑜𝑠2𝜔𝑡 + ⋯+ ⋯+ 𝑎𝑛 sin(𝑛𝜔𝑡)

+ 𝑏𝑛 cos(𝑛𝜔𝑡) 

= 𝑎0 + ∑ 𝑌𝑛

∞

𝑛=1

sin(𝑛𝜔𝑡 + 𝜙𝑛) 

= 𝑎0 + 𝑌1 sin(𝜔𝑡 + 𝜙1) + 𝑌2 sin(2𝜔𝑡 + 𝜙2) + ⋯ 

Where 𝑎0 =
1

2𝜋
∫ 𝑓(𝜃)𝑑𝜃 =

2𝜋

0

1

2𝜋
∫ 𝑦 𝑑𝜃

2𝜋

0
 

𝑎𝑛 =
1

𝜋
∫ 𝑓(𝜃) cos(𝑛𝜃) 𝑑𝜃 =

2𝜋

0

1

𝜋
∫ 𝑦𝑐𝑜𝑠(𝑛𝜃) 𝑑𝜃

2𝜋

0

 

𝑏𝑛 =
1

𝜋
∫ 𝑓(𝜃)sin (𝑛𝜃)𝑑𝜃 =

2𝜋

0

1

𝜋
∫ 𝑦𝑠𝑖𝑛(𝑛𝜃) 𝑑𝜃

2𝜋

0

 

𝑌𝑛 = √𝑎𝑛
2 + 𝑏𝑛

2 

𝜙𝑛 = tan−1 (
𝑎𝑛

𝑏𝑛
) 

 

 

 

 

 

 

 

 

y 

x 

Linear Characteristics -m 

-m 

y 

x 

Non-Linear Characteristics 



𝑌1 = √𝑎1
2 + 𝑏1

2  

𝜙1 = tan−1 (
𝑎1

𝑏1
) 

Describing Funtion (DF) = 
𝑌1

𝑋
< 𝜙1 = 𝐾𝑁(𝑋, 𝜔) 

 

 

 

 

 

 

 

 

 

N- Non-Linear Element 

N must be linearized by the help of DF represented as 𝐾𝑁(𝑋, 𝜔) 

Where 𝐾𝑁(𝑋, 𝜔) =
𝑌1

𝑋
< 𝜙1 

 

 

 

 

 

 

 

 

 

Non-linear Element  

 

 

 

 

  
G1(S) N G2(S

) R(S) 

C(S) 

  
G1(S) 𝐾𝑁(𝑋, 𝜔) G2(S

) R(S) 

C(S) 

Incidental 

Ex: Saturation, Dead 

Zone, Saturation & 

Dead Zone 

Intentional 

Ex: Ideal Relay, Ideal 

relay with dead 

zone, Ideal relay 

with hysteresis. 



Intentional Non-Linearity 

a) Ideal Relay  

 

 

 

 

 

 

 

b) Ideal Relay with Deadzone  

 

 

 

 

 

 

 

 

 

 

c) Ideal relay with hysteresis 

 

 

 

 

 

 

 

 

 

 

 

+M 

-M 

X 

Y 

Y 

X 
X/2 

-X/2 

+M 

-M 

x/2 -x/2 X 

Y 



Ideal Relay 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ideal Relay (LVDT)  

 

 

 

 

 

 

X 

Y 

0 

𝜋 

2𝜋 

𝜋 2𝜋 

Y 

𝜃 

0 

+m 

𝐾𝑁(𝑋, 𝜔) =
𝑌1

𝑋
< 𝜙1 

2𝜋 𝜋 

𝜃 

0 

+m 

Y 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here 𝑥(𝑡) = 𝑥𝑠𝑖𝑛𝜔𝑡 

𝑦 = 𝑀, 0 ≤ 𝜃 ≤ 𝜋 

   = −𝑀, 𝜋 ≤ 𝜃 ≤ 2𝜋 

 

0 

+m 

-m 

0 

𝜋 

2𝜋 

X 

X 

X 



DF= 𝐾𝑁(𝑥, 𝜔) =
𝑌1

𝑥
< 𝜙                                     (1) 

𝑌1 = √𝑎1
2 + 𝑏1

2  &  𝜙 = tan−1 (
𝑎1

𝑏1
) 

𝑎0 =
1

2𝜋
∫ 𝑌 𝑑𝜃 =

1

2𝜋
[∫ 𝑀 𝑑𝜃 + ∫ (−𝑀) 𝑑𝜃

2𝜋

0

𝜋

0

]
2𝜋

0

 

=
1

2𝜋
𝑀[(𝜃)0

𝜋 − (𝜃)0
𝜋] 

=
1

2𝜋
.𝑀[𝜋 − 0 − 2𝜋 + 𝜋] = 0 

𝑎1 =
1

𝜋
∫ 𝑌𝑐𝑜𝑠𝜃 𝑑𝜃 =

1

𝜋
[∫ 𝑀𝑐𝑜𝑠𝜃 𝑑𝜃

𝜋

0

+ ∫ (−𝑀)𝑐𝑜𝑠𝜃 𝑑𝜃
2𝜋

0

]
2𝜋

0

 

=
1

𝜋
 𝑀[[𝑠𝑖𝑛𝜃0

𝜋] − [𝑠𝑖𝑛𝜃0
2𝜋]] 

=
𝑀

𝜋
[𝑠𝑖𝑛𝜋 − 𝑠𝑖𝑛0 − 𝑠𝑖𝑛2𝜋 + 𝑠𝑖𝑛𝜋] = 0 

𝑏1 =
1

𝜋
∫ 𝑌𝑠𝑖𝑛𝜃 𝑑𝜃 =

1

𝜋
[∫ 𝑀𝑠𝑖𝑛𝜃 𝑑𝜃

𝜋

0

+ ∫ (−𝑀)𝑠𝑖𝑛𝜃 𝑑𝜃
2𝜋

0

]
2𝜋

0

 

=
𝑀

𝜋
[[−𝑐𝑜𝑠𝜃0

𝜋] − [−𝑐𝑜𝑠𝜃0
2𝜋]] = 0 

=
𝑀

𝜋
[−𝑐𝑜𝑠𝜋 + 𝑐𝑜𝑠𝜋 + 𝑐𝑜𝑠2𝜋 − 𝑐𝑜𝑠𝜋] =

4𝑀

𝜋
 

𝜙 = tan−1 (
𝑎1

𝑏1
) = tan−1 (

0

4𝑚/𝜋
) = 0 

𝑌1 = √0 + (
4𝑀

𝜋
)
2

 = 
4𝑀

𝜋
 

DF =  𝐾𝑁(𝑥, 𝜔) =
𝑌1

𝑥
< 𝜙  = 

4𝑀

𝜋𝑥
< 0                               

Relay with Hysteresis (Schmitt-trigger) 

 

 

 

 

 

 

 

+m 

-m 

𝜃1 𝜋 + 𝜃1 2𝜋 + 𝜃1 



 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here 𝑥 = 𝑥𝑠𝑖𝑛𝜃 

𝜃1 = sin−1 (
ℎ

2𝜋
) 

𝑌 = 𝑀, 𝜃1 ≤ 𝜃 ≤ 𝜋 + 𝜃1 

    =  −𝑀, 𝜋 + 𝜃1 ≤ 𝜃 ≤ 2𝜋 + 𝜃1 

DF = 
𝑌1

𝑋
< 𝜙 

-M 

X 

Y 

X1 

𝜃1 

𝜋 + 𝜃1 

2𝜋 + 𝜃1 

0 



𝑎0 =
1

2𝜋
∫ 𝑌 𝑑𝜃 =

2𝜋

0

1

2𝜋
[∫ 𝑀 𝑑𝜃 − ∫ 𝑀 𝑑𝜃

2𝜋+𝜃1

𝜋+𝜃1

𝜋+𝜃1

𝜃1

] 

= 
𝑀

2𝜋
[𝜃 

 | 𝜃1

𝜋+𝜃1 − (𝜃)|
𝜋+𝜃1

2𝜋+𝜃1

] 

=
𝑀

2𝜋
[𝜋 + 𝜃1 − 𝜃1 − 2𝜋 − 𝜃1 + 𝜋 + 𝜃1] = 0 

𝑎1 =
1

𝜋
∫ 𝑌𝑐𝑜𝑠𝜃 𝑑𝜃 =

2𝜋

0

1

𝜋
[∫ 𝑀𝑐𝑜𝑠𝜃 𝑑𝜃 + ∫ (−𝑀𝑐𝑜𝑠𝜃 𝑑𝜃) 

2𝜋+𝜃1

𝜋+𝜃1

𝜋+𝜃1

𝜃1

] 

=
𝑀

𝜋
[∫ 𝑐𝑜𝑠𝜃 𝑑𝜃 − ∫ (𝑐𝑜𝑠𝜃 𝑑𝜃) 

2𝜋+𝜃1

𝜋+𝜃1

𝜋+𝜃1

𝜃1

] 

=
𝑀

𝜋
[𝑠𝑖𝑛𝜃 

 | 𝜃1

𝜋+𝜃1 − (𝑠𝑖𝑛𝜃)|
𝜋+𝜃1

2𝜋+𝜃1

] 

=
𝑀

𝜋
[sin (𝜋 + 𝜃1) − 𝑠𝑖𝑛𝜃1 − sin (2𝜋 − 𝜃1) + sin (𝜋 + 𝜃1)] = 0 

=
𝑀

𝜋
[−sin𝜃1 − 𝑠𝑖𝑛𝜃1 − sin 𝜃1 − sin𝜃1)] =

4𝑀sin𝜃1

𝜋
= −

4𝑀

𝜋
(

ℎ

2𝑥
) 

𝑏1 =
1

𝜋
∫ 𝑌𝑐𝑜𝑠𝜃 𝑑𝜃

2𝜋

0

 

=
1

𝜋
[∫ 𝑀𝑠𝑖𝑛𝜃 𝑑𝜃 + ∫ (−𝑀𝑠𝑖𝑛𝜃 𝑑𝜃) 

2𝜋+𝜃1

𝜋+𝜃1

𝜋+𝜃1

𝜃1

] 

=
𝑀

𝜋
[(−𝑐𝑜𝑠𝜃) 

 | 𝜃1

𝜋+𝜃1 + 𝑐𝑜𝑠𝜃|
𝜋+𝜃1

2𝜋+𝜃1

] 

=
𝑀

𝜋
[− cos(𝜋 + 𝜃1) + 𝑐𝑜𝑠𝜃1 + 𝑐𝑜 𝑠(2𝜋 + 𝜃1) − cos (𝜋 + 𝜃1)] = 0 

=
𝑀

𝜋
[cos𝜃1 + 𝑐𝑜𝑠𝜃1 + cos 𝜃1 + cos𝜃1)] =

4𝑀cos𝜃1

𝜋
=

4𝑀

𝜋
[1 − (

ℎ

2𝑥
)
2

]

1/2

 

𝑌1 = √𝑎1
2 + 𝑏1

2 = √(
4𝑀

𝜋
 

ℎ

2𝑥
)
2

− (
4𝑀

𝜋
(1 −

ℎ

2𝑥
)
2

)
1/2

 

=
4𝑀

𝜋
√(

ℎ

2𝑥
)
2

+ 1 − (
ℎ

2𝑥
)
2

 =
4𝑀

𝜋
 

𝜙 = tan−1 (
𝑎1

𝑏1
) = tan−1 [

4𝑀

𝜋
𝑠𝑖𝑛𝜃1

4𝑀

𝜋
cos𝜃1

] = tan−1 tan 𝜃1  

𝜙 = sin−1 (
ℎ

2𝑥
)  𝑎𝑛𝑑 𝐷𝐹 = 𝐾𝑁(𝑥, 𝜔) =

4𝑀

𝜋
< sin−1 (

ℎ

2𝑥
)  



MODULE-III 

 

Liapunov Function for Non-Linear System 

Krasovskii’s Method: 

Consider the system 

�̇� = 𝑓(𝑥); 𝑓(0) = 0           (1)                 [𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑝𝑜𝑖𝑛𝑡 𝑎𝑡 𝑜𝑟𝑖𝑔𝑖𝑛] 

 

Define a Liapunov Function as 𝑣 = 𝑓𝑇𝑃𝑓                     (2) 

Where P= Symmetric +ve definite matrix 

Now �̇� = 𝑓 �̇�𝑝𝑓 + 𝑓𝑡𝑝𝑓                           (3) 

(𝑓̇ =
𝜕𝑓

𝜕𝑥
  
𝜕𝑥

𝜕𝑡
) = 𝐽𝑓 

𝐽 = 

[
 
 
 
 
 

𝜕𝑓1

𝜕𝑥1
  

𝜕𝑓2

𝜕𝑥2
…………………

𝜕𝑓𝑛

𝜕𝑥𝑛

𝜕𝑓2

𝜕𝑥1
   

𝜕𝑓2

𝜕𝑥2
…………………

𝜕𝑓2
𝜕𝑥𝑛      

𝜕𝑓𝑛

𝜕𝑥1
  

𝜕𝑓𝑛

𝜕𝑥2
  ………………

𝜕𝑓𝑛

𝜕𝑥𝑛
  ]
 
 
 
 
 

 

Replace 𝑓̇ in equation (3) we have  

𝑉 = (𝐽𝑓)𝑇𝑃𝑓 + 𝑓𝑡𝑃𝐽𝑓                            

= 𝑓𝑇𝐽𝑇𝑃𝐹 + 𝑓𝑡𝑃𝐽𝑓 =  𝑓𝑇(𝐽𝑇𝑃 + 𝑃𝐽)𝑓 

𝑄 = 𝐽𝑇𝑃 + 𝑃𝐽 

Since V is +ve definite for the system to be asymptotically stable, Q should be positive definite. 

If V(x)→ ∞ 𝑎𝑠 ‖𝑥‖ → ∞ then the system is asymptotically stable in large. 

Variable Gradient Method 

For the autonomous system  

 

�̇� = 𝑓(𝑥); 𝑓(0) = 0           (1)    

Let V(x) be considered for a LF 

The time derivative of V can be expressed as  

�̇�(𝑥) =
𝜕𝑣

𝜕𝑥1
 �̇�1 +

𝜕𝑣

𝜕𝑥2
  �̇�2 + ⋯……………… .+

𝜕𝑣

𝜕𝑥𝑛
 �̇�𝑛          (2) 

Which an be expressed in terms of the gradient of V 



As 𝑉 = (∇𝑉)𝑇�̇�                           (3) 

∇𝑉 =

[
 
 
 
 
 
 
 
 
 
 
𝜕𝑣

𝜕𝑥1
= ∇𝑉1

𝜕𝑣

𝜕𝑥2
= ∇𝑉2

.
:
:
:
:

𝜕𝑣

𝜕𝑥𝑛
= ∇𝑉𝑛]

 
 
 
 
 
 
 
 
 
 

 

The LF can be generated by integrating w.r.t. time both sides equation (3) 

𝑉 =  ∫
𝜕𝑣

𝜕𝑡
 𝑑𝑡 =  ∫ (∇𝑣)𝑇𝑑𝑥                   (4)

𝑥

0

𝑥

0

 

 The above integral is a line integral whose result is independent of the path. 

 The integral can be evaluated sequentially along the component directions (x1, x2, 

……..xn) of the state vector. 

That is 𝑉 = ∫ (∇𝑣)𝑇𝑑𝑥                   
𝑥

0
 

𝑉 = ∫ ∇𝑉1(𝑥1, 0,0,0…… .0)𝑑𝑥1 + ∫ ∇𝑉2(𝑥1, 𝑥2, 0,0,0…… .0)𝑑𝑥2

𝑥2

0

𝑥1

0

+ ∫ ∇𝑉3(𝑥1, 𝑥2, 𝑥3, 0,0,0…… .0)𝑑𝑥3 + ⋯………
𝑥3

0

+ ∫ ∇𝑉𝑛(𝑥1, 𝑥2, …… . 𝑥𝑛)𝑑𝑥𝑛                   (5)
𝑥𝑛

0

 

Let us define  

𝑒1 = 

[
 
 
 
 
1
0
⋮
0
⋮ ]
 
 
 
 

   𝑒2 =

[
 
 
 
 
0
1
⋮
0
⋮ ]
 
 
 
 

 ………………… . 𝑒𝑛 =

[
 
 
 
 
0
0
⋮
0
1]
 
 
 
 

    

 

The integral given in equation (5) states that the path starts from the origin and moves along 

the vector 𝑒1  to 𝑥1. From this point the path moves in the direction of the vector 𝑒2  to 𝑥2.  In 

this way the path finally reaches the point (𝑥1, 𝑥2, …… . 𝑥𝑛) 

 From the function V to be unique thecurl of its gradient must be zero  

∇ × (∇𝑉) = 0              (6) 



 This results in 
𝑛

2
(𝑛 − 1) equation to be satisfies by the components of the 

gradient 

(
𝜕∇𝑉𝑖

𝜕𝑥𝑗
=

𝜕∇𝑉𝑗

𝜕𝑥𝑖
)  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗               (7) 

To begin with a completely general form given below is assumed for the 

gradient vector ∇𝑉 

 

 ∇𝑉 =

[
 
 
 
 
∇𝑉1

∇𝑉2

⋮
⋮

∇𝑉𝑛]
 
 
 
 

=  

[
 
 
 
 
 
 
 
 
 
 
𝑎11𝑥1 + 𝑎12𝑥2 + ⋯………… . . 𝑎1𝑛𝑥𝑛

𝑎21𝑥1 + 𝑎22𝑥2 + ⋯………… . . 𝑎2𝑛𝑥𝑛

:
:
:
:
:
:
:

𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + ⋯………… . . 𝑎𝑛𝑛𝑥𝑛

 
 ]

 
 
 
 
 
 
 
 
 
 

 

𝑎𝑖𝑗
′ 𝑠  𝑎𝑟𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑙𝑦 𝑢𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑  quantity and could be constant of fucntions of both 

state variable and t. it is convenient to choose as a constant  

Advantages:  

Easy to apply 

Disadvantages: 

 Only asymptotic stability can be investigated. 

 F(x); continuously differentiable 

 Domain of attraction is unknown  

 

The determination of Liapunov stability via Liapunov direct method centres around the choice 

of positive definite function v(x) called the Liapunov function.  

There is no universal method for selecting Liapunov function whch is unique for a special 

problem. 

Theorem-1  

 

�̇� = 𝑓(𝑥); 𝑓(0) = 0            

Real scalar function v(x) satisfies the following properties for all 𝑥 on the region ‖𝑥‖ < 𝑡 

a) 𝑉(𝑥) > 0;   𝑥 ≠ 𝑜 

b) 𝑉(0) > 0 

c) 𝑉(𝑥) has continuous partial derivatives with respect to all components x. 



d) 
𝑑𝑣

𝑑𝑡
< 0 (𝑖. 𝑒

𝑑𝑣

𝑑𝑡
  𝑖𝑠 − 𝑣𝑒 𝑠𝑒𝑚𝑖 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑐𝑎𝑙𝑎𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) 

Then the system is stable. 

Theorem-2 

a) 𝑉(𝑥) > 0;   

b) 𝑉(0) > 0 

c) 𝑉(𝑥) has continuous partial derivatives with respect to all components x. 

d) 
𝑑𝑣

𝑑𝑡
< 0 (𝑖. 𝑒

𝑑𝑣

𝑑𝑡
  𝑖𝑠 − 𝑣𝑒 𝑠𝑒𝑚𝑖 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑐𝑎𝑙𝑎𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) 

 

�̇� = 𝑓(𝑥);   𝑓(0) = 0 

There exists a real scalar function 𝑤(𝑥) 

1) 𝑤(𝑥) > 0 ; 𝑥 ≠ 0 

2) w(0)= 0 

3) 𝑤(𝑥) has continuous partial derivatives with respect to all components x. 

4) 
𝑑𝑤

𝑑𝑡
≥ 0 

Then the system is unstable at the origin 

Analysis of Stability by Liapunov Direct Method 

 This method is useful for determining the stability. It is also applicable for linear 

systems. 

 In this method it can be determined without actually solving the differential 

equation. So it is called as direct method. 

Concept of Definiteness 

Let V(x) is a real scalar function. The scalar function v(s) is said to be positive definite if the 

function V(x) has always +ve sign in the given region about the origin except only at origin 

where it is zero 

 The scalar function V(x) is the +ve in the given region if V(x)>0 for all non-zero states 

x in the region and v(0) = 0 



 The scalar function V(x) is said to be negative definite if the function V(x) has always 

–ve sign in the given region about the origin, except only at the origin where it is zero 

or a scalar function. 

Liapunov stability Theorem 

�̇� = 𝑓(𝑥);   

If there exist a scalar function V(x) which is real, continuous and has continuous first partial 

derivatives with  

a) 𝑉(𝑥) > 0;   𝑥 ≠ 0 

b) 𝑉(0) > 0 

c) 𝑉(𝑥) < 0 for all 𝑥 ≠ 0 

Then the system is asymptotically stable. V(x) is the Liapunov Function. 

Ex: The system is given by 

  �̇�1 = 𝑥2 

𝑥2 = −𝑥1 − 𝑥2
3 

Investigate the system by Liapunov method using 

𝑉 = 𝑥1
2 + 𝑥2

2 

Solution:  

�̇�(𝑥) =
𝜕𝑣

𝜕𝑥1
 �̇�1 + 

𝜕𝑣

𝜕𝑥2
 �̇�2  

�̇�(𝑥) = 2𝑥1 �̇�1 +  2𝑥2 �̇�2 =  2𝑥1𝑥2 + 2𝑥2(−𝑥1 − 𝑥2
3) 

= −2𝑥2
4(-ve) 

�̇�(𝑥) < 0   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛𝑜𝑛 − 𝑧𝑒𝑟𝑜𝑒𝑠 𝑖. 𝑒. −𝑣𝑒 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒 

So asymptotically stable. 

 A system is describes by  

�̇� = 𝑓(𝑥) 



If there  exists a scalar function V(x) which is real, continuous and has continuous first partial 

derivatives with  

a) 𝑉(𝑥) < 0;   𝑥 ≠ 0 

b) 𝑉(0) = 0 

c) 𝑉(𝑥) > 0 for all 𝑥 ≠ 0 

Then system is unstable. 

 The direct method of Liapunov and Linear System: 

Let the system is given by 

�̇� = 𝐴𝑥              (1) 

Select the Liapunov function as 

𝑉(𝑥) =  𝑥𝑇𝑃𝑥 

�̇�(𝑥) =  �̇�𝑇𝑃𝑥 + 𝑥𝑇𝑃�̇� 

Substitute the value of  �̇� from equation (1) 

�̇�(𝑥) = (𝐴𝑥)𝑇𝑃𝑥 + 𝑥𝑇𝑃𝐴𝑥 

= 𝑥𝑇𝐴𝑇𝑃𝑥 + 𝑥𝑇𝑃𝐴𝑥 

= 𝑥𝑇[𝐴𝑇𝑃 + 𝑃𝐴]𝑥 

⇒ �̇�(𝑥) = 𝑥𝑇𝑄𝑥 

where 𝑄 = 𝐴𝑇𝑃 + 𝑃𝐴                           (2) 

Q is +ve definite matrix 

Select a +ve definite Q and find out P from equation (2). If P is +ve definite then the system 

will be stable 

Procedure: 

Step-1 Select Q as positive definite. 

Step-2   Obtain P from the equation (2) from this we will have to solve 
𝑛(𝑛+1)

2
   number of 

equation where n is the order of matrix A.  



Step-3   Using Sylvester’s theorem determine the definiteness of P. if P is +ve definite the 

system is stable otherwise unstable. Generally, Q can be taken as Identity Matrix. 

Sylvester’s Theorem: 

This theorem states that the necessary and sufficient condition that the quadratic form V(x) be 

+ve definite are that all the successive principal minor of P be +ve i.e 

𝑃11 > 0 

|
𝑃11    𝑃12

𝑃21      𝑃22
| > 0                         [

𝑃11 …………… .  
𝑃1𝑁………………………..  

] > 0 

A) V(x) is –ve definite if –V(x) is +ve definite. 

B) V(x) = 𝑥𝑇𝑃𝑥 is +ve semi definite if P is singular and all the principal minors are non-

negative. 

Ex: Determine the stability of the system describe by the following equation 

�̇� = 𝐴𝑥                     𝐴 = [
−1 −2
−1 −4

] 

𝐴𝑇𝑃 + 𝑃𝐴 = −𝑄               (𝑄 = 𝐼 ) 

[
−1 1
−2 −4

] [
𝑃11 𝑃12

𝑃21 𝑃22
] + [

𝑃11 𝑃12

𝑃21 𝑃22
] [

−1 −2
1 4

] = −1 = [
−1 0
0 −1

] 

We have taken 𝑃12 = 𝑃21 

Because solution matrix P is known to be +ve definite real symmetric for stable system. 

[
−𝑃11 + 𝑃21 −𝑃12 + 𝑃22

−2𝑃11 − 4𝑃21 2𝑃12 − 4𝑃22
] + [

−𝑃11 + 𝑃12 −2𝑃11 + 4𝑃12

𝑃21 + 𝑃22 −2𝑃21 + 4𝑃22
] = [

−1 0
0 −1

] 

−2𝑃11 + 2𝑃12 = −1 

−4𝑃21 − 8𝑃22 = −1 

−2𝑃11 − 5𝑃12 + 𝑃22 = 0 

Solving for 𝑃,𝑤𝑒 𝑔𝑒𝑡  

𝑃 = [
𝑃11 𝑃12

𝑃21 𝑃22
] = [

23/60 −7/60

−
7

60

11

60

] 

 



The necessary and sufficient conditions for a matrix 

𝑄 =

[
 
 
 
 
 
 
 
 

𝑞11    𝑞12    𝑞13 ………………… . 𝑞1𝑛

𝑞21   𝑞22        𝑞23   ……………………𝑞2𝑛   

.

.

.

.

.

.
𝑞21   𝑞22        𝑞23   ……………………𝑞2𝑛   ]

 
 
 
 
 
 
 
 

 

To be +ve definite are that all the successive principal minors of Q be +ve i.e 

𝑞11 > 0, [
𝑞11 𝑞12

𝑞21   𝑞22        
] > 0,    [

𝑞11 𝑞12 𝑞13

𝑞21 𝑞22 𝑞23

𝑞31 𝑞32 𝑞1

] > 0 

Def[𝑄] > 0 

 The matrix Q is semi definite if any of the above determinants is zero. 

 The matrix Q is negative definite (semi-definite) if the matrix –Q is positive definite 

(Semi-definite) 

 If Q is positive definite so 𝑄2 𝑎𝑛𝑑 𝑄−1. It should be noted that the definiteness of 

quadratic form scalar function is global. 


